
MANAGEMENT OF SOFTWARE SYSTEMS CST 309 S5 CSE(KTU)

KAVITHA V K ASST PROFESSOR DEPT OF CSE BMCE SASTHAMCOTA Page 1

MODULE 1 : Introduction to Software Engineering (7 hours)

 Introduction to Software Engineering - Professional software development,

Software engineering ethics

 Software process models - The waterfall model, Incremental development.

Process activities - Software specification, Software design and implementation,

Software validation, Software evolution. Coping with change - Prototyping,

Incremental delivery, Boehm's Spiral Model.

 Agile software development - Agile methods, agile manifesto - values and

principles. Agile development techniques, Agile Project Management.

 Case studies: An insulin pump control system. Mentcare - a patient information

system for mental health care.

1.1 Professional software development

 Software is not just a program themselves but also all associated documentation and

configuration data.

Frequently asked questions about software engineering

Question Answer

What is software?

Computer programs and associated

documentation. Software products may be

developed for a particular customer or

may be developed for a general market.

What are the attributes of good software?

Good software should deliver the required

functionality and performance to the user

and should be maintainable, dependable

and usable.

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 S5 CSE(KTU)

KAVITHA V K ASST PROFESSOR DEPT OF CSE BMCE SASTHAMCOTA Page 2

What is software engineering?

Software engineering is an engineering

discipline that is concerned with all

aspects of software production.

What are the fundamental software

engineering activities?

Software specification, software

development, software validation and

software evolution.

What is the difference between software

engineering and computer science?

Computer science focuses on theory and

fundamentals; software engineering is

concerned with the practicalities of

developing and delivering useful

software.

What is the difference between software

engineering and system engineering?

System engineering is concerned with all

aspects of computer-based systems

development including hardware,

software and process engineering.

Software engineering is part of this more

general process.

What are the key challenges facing

software engineering?

Coping with increasing diversity,

demands for reduced delivery times and

developing trustworthy software.

What are the costs of software

engineering?

Roughly 60% of software costs are

development costs, 40% are testing costs.

For custom software, evolution costs

often exceed development costs.

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 S5 CSE(KTU)

KAVITHA V K ASST PROFESSOR DEPT OF CSE BMCE SASTHAMCOTA Page 3

What are the best software engineering

techniques and methods?

While all software projects have to be

professionally managed and developed,

different techniques are appropriate for

different types of system. For example,

games should always be developed using

a series of prototypes whereas safety

critical control systems require a complete

and analyzable specification to be

developed. You can’t, therefore, say that

one method is better than another.

What differences has the web made to

software engineering?

The web has led to the availability of

software services and the possibility of

developing highly distributed service-

based systems. Web-based systems

development has led to important

advances in programming languages and

software reuse.

Software Products

 Generic products

 Stand-alone systems that are marketed and sold to any customer who wishes to buy

them.

 Examples – PC software such as graphics programs, project management tools;

CAD software; software for specific markets such as appointments systems for

dentists.

 Organization that develops the software controls the software specification.

Customized products(bespoke)

 Software that is commissioned by a specific customer to meet their own needs.

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 S5 CSE(KTU)

KAVITHA V K ASST PROFESSOR DEPT OF CSE BMCE SASTHAMCOTA Page 4

 Examples – embedded control systems, air traffic control software, traffic

monitoring systems.

 Specification is developed and controlled by the organization ie buying the

software.

Essential Attributes of Good Software

Product characteristics

Description

Maintainability

Software should be written in such a way so that

it can evolve to meet the changing needs of

customers. This is a critical attribute because

software change is an inevitable requirement of

a changing business environment.

Dependability and security

Software dependability includes a range of

characteristics including reliability, security

and safety. Dependable software should not

cause physical or economic damage in the event

of system failure. Malicious users should not be

able to access or damage the system.

Efficiency

Software should not make wasteful use of

system resources such as memory and processor

cycles. Efficiency therefore includes

responsiveness, processing time, memory

utilisation, etc.

Acceptability

Software must be acceptable to the type of users

for which it is designed. This means that it must

be understandable, usable and compatible with

other systems that they use.

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 S5 CSE(KTU)

KAVITHA V K ASST PROFESSOR DEPT OF CSE BMCE SASTHAMCOTA Page 5

1.1.1 Software Engineering

 Software engineering is an engineering discipline that is concerned with all aspects of

software production from the early stages of system specification through to

maintaining the system after it has gone into use.

 Engineering discipline

 Using appropriate theories and methods to solve problems within the

organizational and financial constraints.

 All aspects of software production

 Not just technical process of development. Also project management and the

development of tools, methods etc. to support software production.

Software Process Activities

 Software specification, where customers and engineers define the software that is to

be produced and the constraints on its operation.

 Software development, where the software is designed and programmed.

 Software validation, where the software is checked to ensure that it is what the

customer requires.

 Software evolution, where the software is modified to reflect changing customer and

market requirements.

General issues that affect most Software

 Heterogeneity

 Increasingly, systems are required to operate as distributed systems across

networks that include different types of computer and mobile devices.

 Business and social change

 Business and society are changing incredibly quickly as emerging economies

develop and new technologies become available. They need to be able to change

their existing software and to rapidly develop new software.

 Security and trust

 As software is intertwined with all aspects of our lives, it is essential that we

can trust that software.

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 S5 CSE(KTU)

KAVITHA V K ASST PROFESSOR DEPT OF CSE BMCE SASTHAMCOTA Page 6

1.1.2 Software Engineering Diversity

 There are many different types of software system and there is no universal set of

software techniques that is applicable to all of these.

 The software engineering methods and tools used depend on the type of application

being developed, the requirements of the customer and the background of the

development team.

Application Types

 Stand-alone applications

 These are application systems that run on a local computer, such as a PC. They

include all necessary functionality and do not need to be connected to a

network.

 Interactive transaction-based applications

 Applications that execute on a remote computer and are accessed by users from

their own PCs or terminals. These include web applications such as e-commerce

applications.

 Embedded control systems

 These are software control systems that control and manage hardware devices.

Numerically, there are probably more embedded systems than any other type of

system.

 Batch processing systems

 These are business systems that are designed to process data in large batches.

They process large numbers of individual inputs to create corresponding

outputs.

 Entertainment systems

 These are systems that are primarily for personal use and which are intended to

entertain the user.

 Systems for modeling and simulation

 These are systems that are developed by scientists and engineers to model

physical processes or situations, which include many, separate, interacting

objects.

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 S5 CSE(KTU)

KAVITHA V K ASST PROFESSOR DEPT OF CSE BMCE SASTHAMCOTA Page 7

 Data collection systems

 These are systems that collect data from their environment using a set of sensors

and send that data to other systems for processing.

 Systems of systems

 These are systems that are composed of a number of other software systems.

 software that has already been developed rather than write new software.

1.1.3 Software Engineering and the Web

 The Web is now a platform for running application and organizations are increasingly

developing web-based systems rather than local systems.

 Web services allow application functionality to be accessed over the web.

 Cloud computing is an approach to the provision of computer services where

applications run remotely on the ‘cloud’.

 Users do not buy software buy pay according to use.

Web software Engineering

 Software reuse is the dominant approach for constructing web-based systems.

 When building these systems, you think about how you can assemble them from

pre-existing software components and systems.

 Web-based systems should be developed and delivered incrementally.

 It is now generally recognized that it is impractical to specify all the

requirements for such systems in advance.

 User interfaces are constrained by the capabilities of web browsers.

 Technologies such as AJAX allow rich interfaces to be created within a web

browser but are still difficult to use. Web forms with local scripting are more

commonly used.

Web based Software Engineering

 Web-based systems are complex distributed systems but the fundamental principles of

software engineering discussed previously are as applicable to them as they are to any

other types of system.

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 S5 CSE(KTU)

KAVITHA V K ASST PROFESSOR DEPT OF CSE BMCE SASTHAMCOTA Page 8

 The fundamental ideas of software engineering, discussed in the previous section,

apply to web-based software in the same way that they apply to other types of software

system.

1.2 Software Engineering Ethics

 Software engineering involves wider responsibilities than simply the application of

technical skills.

 Software engineers must behave in an honest and ethically responsible way if they are

to be respected as professionals.

 Ethical behaviour is more than simply upholding the law but involves following a set

of principles that are morally correct.

Issues of Professional Responsibility

 Confidentiality

 Engineers should normally respect the confidentiality of their employers or

clients irrespective of whether or not a formal confidentiality agreement has

been signed.

 Competence

 Engineers should not misrepresent their level of competence. They should not

knowingly accept work which is outwith their competence.

 Intellectual property rights

 Engineers should be aware of local laws governing the use of intellectual

property such as patents, copyright, etc. They should be careful to ensure that

the intellectual property of employers and clients is protected.

 Computer misuse

 Software engineers should not use their technical skills to misuse other people’s

computers. Computer misuse ranges from relatively trivial (game playing on an

employer’s machine, say) to extremely serious (dissemination of viruses).

ACM/IEEE Code of Ethics

 The professional societies in the US have cooperated to produce a code of ethical

practice.

 Members of these organisations sign up to the code of practice when they join.

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 S5 CSE(KTU)

KAVITHA V K ASST PROFESSOR DEPT OF CSE BMCE SASTHAMCOTA Page 9

 The Code contains eight Principles related to the behaviour of and decisions made by

professional software engineers, including practitioners, educators, managers,

supervisors and policy makers, as well as trainees and students of the profession.

 ACM/IEEE Code of Ethics

 Software Engineering Code of Ethics and Professional Practice

 ACM/IEEE-CS Joint Task Force on Software Engineering Ethics and Professional

Practices

 PREAMBLE

 The short version of the code summarizes aspirations at a high level of the abstraction;

the clauses that are included in the full version give examples and details of how these

aspirations change the way we act as software engineering professionals. Without the

aspirations, the details can become legalistic and tedious; without the details, the

aspirations can become high sounding but empty; together, the aspirations and the

details form a cohesive code.

 Software engineers shall commit themselves to making the analysis, specification,

design, development, testing and maintenance of software a beneficial and respected

profession. In accordance with their commitment to the health, safety and welfare of

the public, software engineers shall adhere to the following Eight Principles:

Ethical principles

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 S5 CSE(KTU)

KAVITHA V K ASST PROFESSOR DEPT OF CSE BMCE SASTHAMCOTA Page 10

1.3 Case Studies

 A personal insulin pump

 An embedded system in an insulin pump used by diabetics to maintain blood

glucose control.

 A mental health case patient management system

 A system used to maintain records of people receiving care for mental health

problems.

 A wilderness weather station

 A data collection system that collects data about weather conditions in remote

areas.

1.3.1 Insulin Pump Control System

 Collects data from a blood sugar sensor and calculates the amount of insulin required

to be injected.

 Calculation based on the rate of change of blood sugar levels.

 Sends signals to a micro-pump to deliver the correct dose of insulin.

 Safety-critical system as low blood sugars can lead to brain malfunctioning, coma and

death; high-blood sugar levels have long-term consequences such as eye and kidney

damage.

Insulin Pump Hardware Architecture

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 S5 CSE(KTU)

KAVITHA V K ASST PROFESSOR DEPT OF CSE BMCE SASTHAMCOTA Page 11

Activity model of the insulin pump

Essential High-Level Requirements

 The system shall be available to deliver insulin when required.

 The system shall perform reliably and deliver the correct amount of insulin to

counteract the current level of blood sugar.

 The system must therefore be designed and implemented to ensure that the system

always meets these requirements.

1.3.2 A Patient Information System for Mental Health Care

 A patient information system to support mental health care is a medical information

system that maintains information about patients suffering from mental health

problems and the treatments that they have received.

 Most mental health patients do not require dedicated hospital treatment but need to

attend specialist clinics regularly where they can meet a doctor who has detailed

knowledge of their problems.

 To make it easier for patients to attend, these clinics are not just run in hospitals. They

may also be held in local medical practices or community centres.

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 S5 CSE(KTU)

KAVITHA V K ASST PROFESSOR DEPT OF CSE BMCE SASTHAMCOTA Page 12

MHC-PMS

 The MHC-PMS (Mental Health Care-Patient Management System) is an information

system that is intended for use in clinics.

 It makes use of a centralized database of patient information but has also been designed

to run on a PC, so that it may be accessed and used from sites that do not have secure

network connectivity.

 When the local systems have secure network access, they use patient information in the

database but they can download and use local copies of patient records when they are

disconnected.

MHC-PMS goals

 To generate management information that allows health service managers to assess

performance against local and government targets.

 To provide medical staff with timely information to support the treatment of patients.

The organization of the MHC-PMS

MHC-PMS Key Features

 Individual care management

 Clinicians can create records for patients, edit the information in the system,

view patient history, etc. The system supports data summaries so that doctors

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 S5 CSE(KTU)

KAVITHA V K ASST PROFESSOR DEPT OF CSE BMCE SASTHAMCOTA Page 13

can quickly learn about the key problems and treatments that have been

prescribed.

 Patient monitoring

 The system monitors the records of patients that are involved in treatment and

issues warnings if possible problems are detected.

 Administrative reporting

 The system generates monthly management reports showing the number of

patients treated at each clinic, the number of patients who have entered and left

the care system, number of patients sectioned, the drugs prescribed and their

costs, etc.

MHC-PMS concerns

 Privacy

 It is essential that patient information is confidential and is never disclosed to

anyone apart from authorised medical staff and the patient themselves.

 Safety

 Some mental illnesses cause patients to become suicidal or a danger to other

people. Wherever possible, the system should warn medical staff about

potentially suicidal or dangerous patients.

 The system must be available when needed otherwise safety may be

compromised and it may be impossible to prescribe the correct medication to

patients.

1.3.3 Wilderness Weather Station

 The government of a country with large areas of wilderness decides to deploy several

hundred weather stations in remote areas.

 Weather stations collect data from a set of instruments that measure temperature and

pressure, sunshine, rainfall, wind speed and wind direction.

 The weather station includes a number of instruments that measure weather

parameters such as the wind speed and direction, the ground and air

temperatures, the barometric pressure and the rainfall over a 24-hour period.

Each of these instruments is controlled by a software system that takes

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 S5 CSE(KTU)

KAVITHA V K ASST PROFESSOR DEPT OF CSE BMCE SASTHAMCOTA Page 14

parameter readings periodically and manages the data collected from the

instruments.

The Weather Station’s Environment

Weather information system

 The weather station system

This is responsible for collecting weather data, carrying out some initial data

processing and transmitting it to the data management system.

 The data management and archiving system

This system collects the data from all of the wilderness weather stations, carries out

data processing and analysis and archives the data.

 The station maintenance system

This system can communicate by satellite with all wilderness weather stations to

monitor the health of these systems and provide reports of problems.

Additional software functionality

 Monitor the instruments, power and communication hardware and report faults to the

management system.

 Manage the system power, ensuring that batteries are charged whenever the

environmental conditions permit but also that generators are shut down in potentially

damaging weather conditions, such as high wind.

 Support dynamic reconfiguration where parts of the software are replaced with new

versions and where backup instruments are switched into the system in the event of

system failure.

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 S5 CSE(KTU)

KAVITHA V K ASST PROFESSOR DEPT OF CSE BMCE SASTHAMCOTA Page 15

The Software Process

 A structured set of activities required to develop a

software system.

 Many different software processes but all involve:

 Specification – defining what the system should do;

 Design and implementation – defining the organization of the system and

implementing the system;

 Validation – checking that it does what the customer wants;

 Evolution – changing the system in response to changing customer needs.

 A software process model is an abstract representation of a process. It presents a

description of a process from some particular perspective.

Software Process Descriptions

 When we describe and discuss processes, we usually talk about the activities in these

processes such as specifying a data model, designing a user interface, etc. and the

ordering of these activities.

 Process descriptions may also include:

 Products, which are the outcomes of a process activity;

 Roles, which reflect the responsibilities of the people involved in the process;

 Pre- and post-conditions, which are statements that are true before and after a

process activity has been enacted or a product produced.

Plan-Driven and Agile Processes

 Plan-driven processes are processes where all of the process activities are planned in

advance and progress is measured against this plan.

 In agile processes, planning is incremental and it is easier to change the process to

reflect changing customer requirements.

 In practice, most practical processes include elements of both plan-driven and agile

approaches.

 There are no right or wrong software processes.

Software Process Models

 The waterfall model

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 S5 CSE(KTU)

KAVITHA V K ASST PROFESSOR DEPT OF CSE BMCE SASTHAMCOTA Page 16

 Plan-driven model. Separate and distinct phases of specification and

development.

 Incremental development

 Specification, development and validation are interleaved. May be plan-driven

or agile.

 Reuse-oriented software engineering(Operation and maintenance)

 The system is assembled from existing components. May be plan-driven or

agile.

 In practice, most large systems are developed using a process that incorporates

elements from all of these models.

The Waterfall Model

Waterfall model phases

There are separate identified phases in the waterfall model:

 Requirements analysis and definition: The system services, constraints

and goals are established by consultation with system users.

 System and software design: The systems design process allocates the

requirements to either hardware or software systems by establishing an

overall system architecture. Software design involves identifying and

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 S5 CSE(KTU)

KAVITHA V K ASST PROFESSOR DEPT OF CSE BMCE SASTHAMCOTA Page 17

describing the fundamental software system abstractions and their

relationships.

 Implementation and unit testing: During this stage, the software design is

realized as a set of programs or program units. Unit testing involves

verifying that each unit meets its multiplication.

 Integration and system testing: The individual program units or programs

are integrated and tested as a complete system to ensure that the software

requirements have been met. After testing, the software system is delivered

to the customer.

 Operation and maintenance: longest phase, the system is installed and put

into the practical use. Maintenance involves correcting errors which were

not discovered in earlier stages of the life cycle, improves the

implementation of system units and enhancing the system’s services as new

requirements are discovered.

The main drawback of the waterfall model is the difficulty of accommodating change after

the process is underway. In principle, a phase has to be complete before moving onto the

next phase.

Waterfall Model Problems

 Inflexible partitioning of the project into distinct stages makes it difficult to respond to

changing customer requirements.

 Therefore, this model is only appropriate when the requirements are well-

understood and changes will be fairly limited during the design process.

 Few business systems have stable requirements.

 The waterfall model is mostly used for large systems engineering projects where a

system is developed at several sites.

 In those circumstances, the plan-driven nature of the waterfall model helps

coordinate the work.

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 S5 CSE(KTU)

KAVITHA V K ASST PROFESSOR DEPT OF CSE BMCE SASTHAMCOTA Page 18

Incremental Development

Incremental Development is based on the idea of developing an initial implementation,

exposing this to user comment and evolving it through several versions until an adequate

system has been developed. Specification, development and validation activities are

interleaved rather than separate, with rapid feedback across activities.

Each increment of the system incorporates some functionality that is needed by the

customer. This means that the customer can evaluate the system at a relatively early stage

in the development to see if it delivers what is required. If not, then only the current

increment has to be changed, and new functionality defined for later increments.

Incremental Development Benefits

 The cost of accommodating changing customer requirements is reduced.

 The amount of analysis and documentation that has to be redone is much less

than is required with the waterfall model.

 It is easier to get customer feedback on the development work that has been done.

 Customers can comment on demonstrations of the software and see how much

has been implemented.

 More rapid delivery and deployment of useful software to the customer is possible.

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 S5 CSE(KTU)

KAVITHA V K ASST PROFESSOR DEPT OF CSE BMCE SASTHAMCOTA Page 19

 Customers are able to use and gain value from the software earlier than is possible with a

waterfall process.

Incremental Development Problems

 The process is not visible.

 Managers need regular deliverables to measure progress. If systems are

developed quickly, it is not cost-effective to produce documents that reflect

every version of the system.

 System structure tends to degrade as new increments are added.

 Unless time and money is spent on refactoring to improve the software, regular

change tends to corrupt its structure. Incorporating further software changes

becomes increasingly difficult and costly.

Process Activities

 Real software processes are inter-leaved sequences of technical, collaborative and

managerial activities with the overall goal of specifying, designing, implementing and

testing a software system.

 The four basic process activities of Specification, Development, Validation and

Evolution are organized differently in different development processes. In the waterfall

model, they are organized in sequence, whereas in incremental development they are

inter-leaved.

1. Software Specification

 The process of establishing and defining what services are required from

the system and identifying the constraints on the system’s operation and

development.

 Is a particularly critical stage of the software process as errors at this

stage inevitably lead to later problems in system design and

implementation.

 RE process aims to produce an agreed requirements document that

specifies a system satisfying stakeholder requirements.

Requirements are presented at two levels: End users and customers need a high level

statement of the requirements; system developers need a more detailed system

specification

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 S5 CSE(KTU)

KAVITHA V K ASST PROFESSOR DEPT OF CSE BMCE SASTHAMCOTA Page 20

Requirements engineering process

 Feasibility study

 Is it technically and financially feasible to build the system?

 Developed within the existing budgetary constraints.(cost effective)

 Requirements elicitation and analysis

 What do the system stakeholders require or expect from the system?

 Observations from existing systems, discussions with potential users,

task analysis.

 This may involve the development of one or more models and

prototypes

 Requirements specification

 Is the activity of translating the information gathered during the analysis

activity into a document.

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 S5 CSE(KTU)

KAVITHA V K ASST PROFESSOR DEPT OF CSE BMCE SASTHAMCOTA Page 21

Two types of requirements

 User requirements: are abstract statements of the system requirements

for the customer and end user of the system.

 System requirements are a more detailed description of the functionality

to be provided.

 Requirements validation

 Checking the validity of the requirements(consistent/complete)

2. Software Design and Implementation

 The process of converting the system specification into an executable system.

 Software design

 Design a software structure that realises the specification;

 Implementation

 Translate this structure into an executable program;

 The activities of design and implementation are closely related and may be inter-leaved.

A General Model of the Design Process

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 S5 CSE(KTU)

KAVITHA V K ASST PROFESSOR DEPT OF CSE BMCE SASTHAMCOTA Page 22

 Software platform-the environment in which software will execute.

 Information about this platform is an essential input to the design process, as

designers must decide how best to integrate it with the software‘s

environment.

 The requirement specification is the description of the functionality the

software must provide and its performance and dependability requirements.

 If the system is to process existing data, then the description of that data

may be included in the platform specification.

 Otherwise, the data description must be an input to the design process so that

the system data organization to be defined.

Design Activities

 Architectural design, where you identify the overall structure of the system, the

principal components (sometimes called sub-systems or modules), their relationships

and how they are distributed.

 Interface design, where you define the interfaces between system components. This

interface specification must be unambiguous

 Component design, where you take each system component and design how it will

operate.

 Database design, where you design the system data structures and how these are to be

represented in a database. The work depends on whether an existing database is to be

reused or a new database is to be created.

3. Software Validation

 Verification and validation (V & V) is intended to show that a system conforms to its

specification and meets the requirements of the system customer.

 Involves checking processes such as inspections and reviews.

 System testing involves executing the system with test cases that are derived from the

specification of the real data to be processed by the system.

 Testing is the most commonly used V & V activity.

Stages of Testing

3 stage process

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 S5 CSE(KTU)

KAVITHA V K ASST PROFESSOR DEPT OF CSE BMCE SASTHAMCOTA Page 23

System components are tested (component defects are discovered early in the

process) then the integrated system is tested, (interface problems are found when

the system is integrated), finally the system is tested with the customer’s data.

Testing Stages

 Development or component testing

 Individual components are tested independently;

 Components may be functions or objects or coherent groupings of these entities.

 Test automation tools such as JUnit that can rerun component tests when new

versions of the components are created, are commonly used.

 System testing

 Testing of the system as a whole.

 Concerned with showing the system meets its functional and non-functional

requirements, Testing of emergent properties is particularly important.

 Acceptance testing(alpha testing)

 This is the final stage in the testing process before the system is accepted for

operational use.

 The system is tested with data supplied by the system customer rather than with

simulated test data .Testing with customer data to check that the system meets

the customer’s needs.

Testing Phases in a Plan-Driven Software Process

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 S5 CSE(KTU)

KAVITHA V K ASST PROFESSOR DEPT OF CSE BMCE SASTHAMCOTA Page 24

 Acceptance testing(alpha testing)

 Alpha Testing is a type of software testing performed to identify bugs before

releasing the product to real users or to the public. Alpha Testing is one of

the user acceptance testing.

 Custom systems are developed for a single client

 This alpha testing process continues until the system developer and the

client agree that the delivered system is an acceptable implementation of

requirements.

Beta testing

 When software is to be marketed as a software product, beta testing is used.

 Beta Testing is performed by real users of the software application in a real

environment.

 This involves delivering a system to a number of potential users who agree

to use that system.

 They report problem to system developers.

 This exposes the product to real use and detects errors that may not have

been anticipated by the system builders.

 After this feedback, the system is modified and released either for further

beta testing or general sale.

https://www.geeksforgeeks.org/?p=294134

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 S5 CSE(KTU)

KAVITHA V K ASST PROFESSOR DEPT OF CSE BMCE SASTHAMCOTA Page 25

Alpha Testing Beta Testing

Alpha testing involves both the white box

and black box testing.
Beta testing commonly uses black box

testing.

Alpha testing is performed by testers who

are usually internal employees of the

organization.
Beta testing is performed by clients who

are not part of the organization.

Alpha testing is performed at developer’s

site.
Beta testing is performed at end-user of

the product.

Reliability and security testing are not

checked in alpha testing.
Reliability, security and robustness are

checked during beta testing.

Alpha testing ensures the quality of the

product before forwarding to beta testing.

Beta testing also concentrates on the

quality of the product but collects users

input on the product and ensures that the

product is ready for real time users.

Alpha testing requires a testing

environment or a lab.
Beta testing doesn’t require a testing

environment or lab.

Alpha testing may require long execution

cycle.
Beta testing requires only a few weeks of

execution.

Developers can immediately address the

critical issues or fixes in alpha testing.
Most of the issues or feedback collected

from beta testing will be implemented in

future versions of the product.

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 S5 CSE(KTU)

KAVITHA V K ASST PROFESSOR DEPT OF CSE BMCE SASTHAMCOTA Page 26

4. Software Evolution

 Software is inherently flexible and can change.

 As requirements change through changing business circumstances, the software that

supports the business must also evolve and change.

 Although there has been a demarcation between development and evolution

(maintenance) this is increasingly irrelevant as fewer and fewer systems are completely

new.

Coping with change

 Change is inevitable in all large software projects.

 Business changes lead to new and changed system requirements

 New technologies open up new possibilities for improving implementations

 Changing platforms require application changes

 Change leads to rework so the costs of change include both rework (e.g. re-analysing

requirements) as well as the costs of implementing new functionality.

Reducing the Costs of Rework

 Change avoidance, where the software process includes activities that can anticipate

possible changes before significant rework is required.

 For example, a prototype system may be developed to show some key features

of the system to customers.

 Change tolerance, where the process is designed so that changes can be

accommodated at relatively low cost.

 This normally involves some form of incremental development. Proposed

changes may be implemented in increments that have not yet been developed.

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 S5 CSE(KTU)

KAVITHA V K ASST PROFESSOR DEPT OF CSE BMCE SASTHAMCOTA Page 27

If this is impossible, then only a single increment (a small part of the system)

may have be altered to incorporate the change.

Software Prototyping

 A prototype is an initial version of a system used to demonstrate concepts and try out

design options, and find out more about the problem and its possible solutions.

 Where a version of the system or part of the system is developed quickly to check the

customer requirements.

 Rapid, iterative development of the prototype is essential, so that costs are controlled

and system stakeholders can experiment with the prototype early in the software

process.

 A prototype can be used in:

 The requirements engineering process can help with requirements elicitation

and validation;

 In design processes to explore particular software solutions options and develop a UI

design;

Benefits of Prototyping

 Improved system usability.

 A closer match to users’ real needs.

 Improved design quality.

 Improved maintainability.

 Reduced development effort.

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 S5 CSE(KTU)

KAVITHA V K ASST PROFESSOR DEPT OF CSE BMCE SASTHAMCOTA Page 28

The Process of Prototype Development

 The objectives of prototyping should be made explicit from the start of the process.

This may develop a system to prototype the user interface, or to validate he functional

requirements, to demonstrate the feasibility of the application to managers. The same

prototype cannot meet all objcetives.so they misunderstand the functionality of the

prototype development. - May be based on rapid prototyping languages or tools.

 The second stage is to decide what to put into /leave out of the prototype system. To

reduce prototyping costs and accelerate the delivery schedule, leave some functionality

out of the prototype-May be some nonfunctional requirements. Focus on functional

rather than non-functional requirements such as reliability and security

 Prototype should focus on areas of the product that are not well-understood;

 Error checking and recovery may not be included in the prototype;

 Final stage is evaluation.

Developers are pressured by managers to deliver Throw away prototypes, when there are

delays in delivering the final version of the software.

Throw-Away Prototypes

 Prototypes should be discarded after development as they are not a good basis for a

production system:

 It may be impossible to tune the system to meet non-functional requirements;

such as performance ,security ,robustness

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 S5 CSE(KTU)

KAVITHA V K ASST PROFESSOR DEPT OF CSE BMCE SASTHAMCOTA Page 29

 Prototypes are normally undocumented; only design specification is prototype

code. This is not good enough for long term maintenance.

 The prototype structure is usually degraded through rapid change;the system

will be difficult and expensive to maintain,.

 The prototype probably will not meet normal organizational quality standards.

Incremental Delivery

 Rather than deliver the system as a single delivery, the development and delivery is

broken down into increments with each increment delivering part of the required

functionality.

 In an incremental delivery process, customers define which of the services are most

important.

 User requirements are prioritised and the highest priority requirements are included in

early increments.

 Once the system increments have been identified, the requirements for the services to

be delivered in the first increment are defined in detail and that increment is developed.

During development, further requirements analysis for later increments can take place,

but requirements changes for the current increment are not accepted.

 Once an increment is completed and delivered, it is installed in the customer’s normal

working environment. They can experiment with the system, and this helps them clarify

their requirements for later system increments. As new increments are completed, they

are integrated with existing increments so that system functionality improves with each

delivered increment.

Incremental Delivery Advantages

 Customer value can be delivered with each increment so system functionality is

available earlier.

 Early increments act as a prototype to help elicit requirements for later increments.

 Lower risk of overall project failure.

 The highest priority system services tend to receive the most testing.

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 S5 CSE(KTU)

KAVITHA V K ASST PROFESSOR DEPT OF CSE BMCE SASTHAMCOTA Page 30

Incremental Delivery

Incremental Delivery Problems

 Most systems require a set of basic facilities that are used by different parts of the

system.

 As requirements are not defined in detail until an increment is to be

implemented, it can be hard to identify common facilities that are needed by all

increments.

 The essence of iterative processes is that the specification is developed in conjunction

with the software.

 However, this conflicts with the procurement model of many organizations,

where the complete system specification is part of the system development

contract.

Boehm’s spiral model

 Process is represented as a spiral rather than as a sequence of activities with

backtracking.

 Each loop in the spiral represents a phase in the process.

 No fixed phases such as specification or design - loops in the spiral are chosen

depending on what is required.

 Risks are explicitly assessed and resolved throughout the process.

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 S5 CSE(KTU)

KAVITHA V K ASST PROFESSOR DEPT OF CSE BMCE SASTHAMCOTA Page 31

Each loop in the Spiral Model is split into 4 Sectors

 Objective setting

 Specific objectives for the phase are identified. Constraints on the process and

the product are identified and a detailed management plan is drawn up. Project

risks are identified. Alternative strategies may planned.

 Risk assessment and reduction

 Risks are assessed and activities put in place to reduce the key risks.

 Development and validation

 A development model for the system is chosen which can be any of the generic

models.

 Planning

 The project is reviewed and the next phase of the spiral is planned.

Spiral Model Usage

 Spiral model has been very influential in helping people think about iteration in

software processes and introducing the risk-driven approach to development.

 In practice, however, the model is rarely used as published for practical software

development.

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 S5 CSE(KTU)

KAVITHA V K ASST PROFESSOR DEPT OF CSE BMCE SASTHAMCOTA Page 32

Agile Software Development

Rapid software development became known as agile development or agile methods. Rapid

development and delivery is now often the most important requirement for software

systems

 Businesses operate in a fast changing requirement and it is practically

impossible to produce a set of stable software requirements

 Software has to evolve quickly to reflect changing business needs.

Agile development characteristics

 Specification, design and implementation are inter-leaved, there is no detailed

system specification, and design documentation is minimized or generated

automatically by the programming environment used to implement the system.

 System is developed as a series of versions with stakeholders involved in version

evaluation. They may propose changes to the software and new requirements that

should be implemented in a later version of the system.

 Extensive tool support is used to support the development process. Tools that may

be used include automated testing tools, tools to support configuration management,

and system integration and tools to automate user interface production.User interfaces

are often developed using an IDE and graphical toolset.

Agile methods are incremental development methods in which the increments are small,

and, typically, new releases of the system are created (frequent release)and made available

to customers every two or three weeks. They involve customers in the development process

to get rapid feedback on changing requirements. They minimize documentation by using

informal communications rather than formal meetings with written documents.

 In a plan-driven software development process, iteration occurs within activities, with

formal documents used to communicate between stages of the process. For example,

the requirements will evolve, and, ultimately, a requirements specification will be

produced. This is then an input to the design and implementation process.

 In an agile approach, iteration occurs across activities. Therefore, the requirements and

the design are developed together rather than separately

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 S5 CSE(KTU)

KAVITHA V K ASST PROFESSOR DEPT OF CSE BMCE SASTHAMCOTA Page 33

 Agile Methods

 Dissatisfaction with the overheads involved in software design methods of the 1980s

and 1990s led to the creation of agile methods. These methods:

 Focus on the code rather than the design

 Are based on an iterative approach to software development

 Are intended to deliver working software quickly and evolve this quickly to

meet changing requirements.

 The aim of agile methods is to reduce overheads in the software process (e.g. by

limiting documentation) and to be able to respond quickly to changing requirements

without excessive rework.

Principles of agile methods

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 S5 CSE(KTU)

KAVITHA V K ASST PROFESSOR DEPT OF CSE BMCE SASTHAMCOTA Page 34

Agile Manifesto

 We are uncovering better ways of developing software by doing it and helping others do it.

Through this work we have come to value:

 Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

 That is, while there is value in the items on the right, we value the items on the left more.

Agile Development Techniques

XP: Figure illustrates the XP process an increment of the system that is being developed.

XP Release cycle

In XP, requirements are expressed as scenarios (called user stories), which are

implemented directly as a series of tasks. Programmers work in pairs and develop tests for

each task before writing the code. All tests must be successfully executed when new code

is integrated into the system. There is a short time gap between releases of the system.

Extreme programming was an agile practices that were summarized and reflect the

principles of the agile manifesto:

1. Incremental development is supported through small, frequent releases of the system.

Requirements are based on simple customer stories or scenarios that are used as a basis for

deciding what functionality should be included in a system increment.

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 S5 CSE(KTU)

KAVITHA V K ASST PROFESSOR DEPT OF CSE BMCE SASTHAMCOTA Page 35

2. Customer involvement is supported through the continuous engagement of the customer

in the development team. The customer representative takes part in the development and

is responsible for defining acceptance tests for the system.

3. People, not process, are supported through pair programming, collective ownership of

the system code, and a sustainable development process that does not involve excessively

long working hours.

4. Change is embraced through regular system releases to customers, test-first

development, refactoring to avoid code degeneration, and continuous integration of new

functionality.

5. Maintaining simplicity is supported by constant refactoring that improves code quality

and by using simple designs that do not unnecessarily anticipate future changes to the

system.

XP programming practices

Some important practices used in the agile development (XP) are

User stories:

 Software requirements always change. In Agile methods , requirements elicitation is

integrated with development by the idea of “user stories” where a user story is a

scenario of use that might be experienced by a system user.

 After the discussion of development team with customer, they develop a “story card”

that briefly describes a story that encapsulates the customer needs. The development

team then aims to implement that scenario in a future release of the software.

 User stories may be used in planning system iterations. Once the story cards have been

developed, the development team breaks these down into tasks and estimates the effort

and resources required for implementing each task.

 This usually involves discussions with the customer to refine the requirements. The

customer then prioritizes the stories for implementation, choosing those stories that can

be used immediately to deliver useful business support.

 The intention is to identify useful functionality that can be implemented in about two

weeks, when the next release of the system is made available to the customer.

 If changes are required for a system that has already been delivered, new story cards

are developed and again, the customer decides whether these changes should have

priority over new functionality.

 User stories can be helpful in getting users involved in suggesting requirements during

an initial predevelopment requirements elicitation activity.

Cons:

 The principal problem with user stories is completeness. It is difficult to judge if

enough user stories have been developed to cover all of the essential requirements

of a system.

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 S5 CSE(KTU)

KAVITHA V K ASST PROFESSOR DEPT OF CSE BMCE SASTHAMCOTA Page 36

 It is also difficult to judge if a single story gives a true picture of an activity.

Experienced users are often so familiar with their work that they leave things out

when describing it.

Refactoring:

 Changes will always have to be made to the code being developed. Refactoring means

that the programming team look for possible improvements to the software and

implements them immediately.

 Refactoring improves the software structure and readability and avoids the structural

deterioration that naturally occurs when software is changed.

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 S5 CSE(KTU)

KAVITHA V K ASST PROFESSOR DEPT OF CSE BMCE SASTHAMCOTA Page 37

Test-first development:

Extreme Programming developed a new approach to program testing to address the

difficulties of testing without a specification. Testing is automated and is central to the

development process, and development cannot proceed until all tests have been

successfully executed. The key features of testing in XP are:

1. test-first development:

 Write test before write the code.

 Writing tests implicitly defines both an interface and a specification of

behaviour for the functionality being developed.

 Problems of requirements and interface misunderstandings are reduced.

 Test-first development requires there to be a clear relationship between system

requirements and the code implementing the corresponding requirements.

 In XP, this relationship is clear because the story cards representing the

requirements are broken down into tasks and the tasks are the principal unit of

implementation.

 In test-first development, the task implementers have to thoroughly understand

 the specification so that they can write tests for the system.

 This means that ambiguities and omissions in the specification have to be

clarified before implementation begins. It also avoids the problem of “test-

lag.” This may happen when the developer of the system works at a faster pace

than the tester.

2. Incremental test development from scenarios,

 Develop each tasks, so that the development schedule can be maintained.

3. User involvement in the test development and validation, and

 The role of the customer in the testing process is to help develop acceptance

tests for the stories that are to be implemented in the next release of the system.

4. The use of automated testing frameworks.

 Test automation is essential for test-first development. Tests are written as

executable Components before the task is implemented. These testing components

should be stand-alone, should simulate the submission of input to be tested, and

should check that the result meets the output specification.

 An automated test framework is a system that makes it easy to write executable

tests and submit a set of tests for execution. JUnit is a widely used example of an

automated testing framework for Java programs.

Pair programming:

The programming pair sits at the same computer to develop the software. However, the

same pair do not always program together. Rather, pairs are created dynamically so that all

team members work with each other during the development process.

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 S5 CSE(KTU)

KAVITHA V K ASST PROFESSOR DEPT OF CSE BMCE SASTHAMCOTA Page 38

Pair programming has a number of advantages.

1. It supports the idea of collective ownership and responsibility for the system. This

reflects Weinberg’s idea of egoless programming where the software is owned by the team

as a whole and individuals are not held responsible for problems with the code. Instead,

the team has collective responsibility for resolving these problems.

2. It acts as an informal review process because each line of code is looked at by at least

two people.

3. It encourages refactoring to improve the software structure.

Agile Project Management
 The principal responsibility of software project managers is to manage the project so

that the software is delivered on time and within the planned budget for the project.

Scrum

 The Scrum approach is a general agile method and focus is on managing iterative

development rather than specific agile practices.

The Scrum Process

The Sprint Cycle

 Each process iteration produces a product increment that could be delivered to

customers.

 The starting point for planning is the product backlog, which is the list of work to be

done on the project. —the list of items such as product features, requirements, user

stories and engineering improvement that have to be worked on by the Scrum team.

 The product owner has a responsibility to ensure the level of specification is appropriate

for the work to be done.

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 S5 CSE(KTU)

KAVITHA V K ASST PROFESSOR DEPT OF CSE BMCE SASTHAMCOTA Page 39

 Each sprint cycle lasts a fixed length of time, which is usually between 2 and 4 weeks.

At the beginning of each cycle, the Product Owner prioritizes the items on the product

backlog to define which are the most important items to be developed in that cycle.

 Sprints are never extended to take account of unfinished work. Items are returned to

the product backlog if these cannot be completed within the allocated time for the

sprint.

 The whole team is then involved in selecting which of the highest priority items they

believe can be completed. They then estimate the time required to complete these items.

To make these estimates, they use the velocity attained in previous sprints, that is, how

much of the backlog could be covered in a single sprint. This leads to the creation of a

sprint backlog—the work to be done during that sprint.

 The team self-organizes to decide who will work on what, and the sprint begins.

Teamwork in Scrum

 The ‘Scrum master’ is a facilitator who arranges daily meetings, tracks the backlog of

work to be done, records decisions, measures progress against the backlog and

communicates with customers and management outside of the team.

 The whole team attends short daily meetings (scrum)where all team members share

information, describe their progress since the last meeting, problems that have arisen

and what is planned for the following day.

 This means that everyone on the team knows what is going on and, if problems arise,

can re-plan short-term work to cope with them, there is no top-down direction from the

Scrum Master.

 Everyone participates in this short-term planning; the daily interactions among Scrum

teams may be coordinated using a Scrum board. This is an office whiteboard that

includes information and post-it notes about the Sprint backlog, work done,

unavailability of staff, and so on. This is a shared resource for the whole team, and

anyone can change or move items on the board. It means that any team member can, at

a glance, see what others are doing and what work remains to be done.

 At the end of each sprint, there is a review meeting, which involves the whole team.

This meeting has two purposes. First, it is a means of process improvement. The team

reviews the way they have worked and reflects on how things could have been done

better. Second, it provides input on the product and the product state for the product

backlog review that precedes the next sprint.

Scrum Benefits

 The product is broken down into a set of manageable and understandable chunks.

 Unstable requirements do not hold up progress.

 The whole team have visibility of everything and consequently team communication is

improved.

 Customers see on-time delivery of increments and gain feedback on how the product

works.

MANAGEMENT OF SOFTWARE SYSTEMS CST 309 S5 CSE(KTU)

KAVITHA V K ASST PROFESSOR DEPT OF CSE BMCE SASTHAMCOTA Page 40

 Trust between customers and developers is established and a positive culture is created

in which everyone expects the project to succeed.

For offshore development, the product owner is in a different country from the

development team, which may also be distributed. Figure shows the requirements for

Distributed Scrum

Key Points

 Agile methods are incremental development methods that focus on rapid development,

frequent releases of the software, reducing process overheads and producing high-

quality code. They involve the customer directly in the development process.

 The decision on whether to use an agile or a plan-driven approach to development

should depend on the type of software being developed, the capabilities of the

development team and the culture of the company developing the system.

 The Scrum method is an agile method that provides a project management framework.

It is centred round a set of sprints, which are fixed time periods when a system

increment is developed.

 Scaling agile methods for large systems is difficult. Large systems need up-front design

and some documentation.

